样品
成果详情
项目简介 | |||||
---|---|---|---|---|---|
技术简介: | |||||
专利类型: | 发明 | 专利申请号: | CN201810662492.9 | 公开号: | CN109124660B |
专利权人: | 南方医科大学南方医院 | 发明设计人: | 陈韬;李国新 | ||
所属领域: | |||||
摘要: | 本发明公开了基于深度学习的胃肠间质瘤术后风险检测方法和系统,其中方法步骤包括:获取原始病例图像数据集和复发病例图像数据集;提取感兴趣区域并进行预处理;构建残差网络模型,对第二图像数据集中图像数据进行重采样;对残差网络模型进行训练;获取待检测数据并输入至残差网络模型得出检测结果。本发明采用病例样本的腹部增强期薄层CT图像通过残差网络模型进行深度学习,实现对其进行分类,用于胃肠间质瘤术后风险检测判断;同时还可结合RMS‑prop优化算法进行训练、采用基于投票的集成方法实现对较小样本量的对象的分类,增加判断的准确性和稳定性。本发明作为基于深度学习的胃肠间质瘤术后风险检测方法和系统可广泛应用于数据处理领域。 | ||||
补充信息 | |||||
转让方式: | 成熟度: | 预估价值: | |||
市场前景: |